Current Projects


The vision of SFI Harvest: Pioneering the lower-trophic fisheries – Innovations to unlock the blue bioeconomic potential. 

The ocean hosts a large number of species, especially in lower trophic levels, that are either not harvested or only marginally utilised. These species, such as mesopelagic fish, krill and Calanus, could improve food security and the wellbeing of humanity. SFI Harvest will draw upon Norway's leading position in the ocean and offshore sectors to develop technologies for sustainable harvesting and processing of underexploited species. To secure sustainable utilisation of these valuable marine resources, technological solutions must be paired with scientific knowledge about ecosystem dynamics, development of fisheries management and well-documented business models. 

Main objective: To develop knowledge and technologies for responsible harvesting and processing of lower trophic marine resources, allowing sustainable growth of Norway's biomarine industries. 

SFI Harvest brings together pioneering shipowners, key technology providers, large producers of raw materials and feed for the aquaculture sector, stakeholders, SINTEF Ocean and other strong research groups, including AMOS (the Norwegian Centre of Excellence for Autonomous Marine Operations and Systems). The innovations will enable precise and efficient capture and processing of mesopelagic species, zooplankton and phytoplankton.


The REMARO ETN is a consortium of recognized submarine AI experts, software reliability experts, and a marine safety certification agency created to educate 15 ESRs able to realize the vision of reliable autonomy for underwater applications.

REMARO attacks one of the most pressing problems of modern computing, the safety of AI, in the well defined context of submarine robotics. The REMARO research fellows will develop the first ever submarine robotics AI methods with quantified reliability, correctness specifications, models, tests, and analysis & verification methods. REMARO rests on two founding principles: (i) The submarine robot autonomy requires a comprehensive hybrid deliberative architecture, a robotic brain. (ii) Safety and reliability must be co-designed simultaneously with cognition, not separately, as an afterthought. These principles are used to construct the training program (to train ESRs to deliver required scientific breakthroughs) and the expert consortium (to supervise the ESRs, run secondments and courses).

The expertise accumulated in the consortium enables the execution of the interdisciplinary training in (i) computer vision and machine learning, (ii) knowledge, reasoning, and planning, (iii) testing, model-driven-engineering, bug- finding, (iv) verification and model-checking. REMARO delivers a world-class training-by-research to 15 ESRs, with almost 40 days of intense training activities, many interdisciplinary collaborations, 3 cross-sector cross-discipline Challenge Camps, and 37 secondments, including 17 at academic labs and 20 at industrial facilities. The network will communicate results to two large and bustling research communities and to industry via European platforms and its own Industry Follow Group. The training material will be published in the REMARO book and the REMARO online Learning Hub, and the software and data modules will be licensed for open use to accelerate research and maximize the long-lasting impact on European underwater robotics industry.

REMARO has received funding from the European Union’s EU Framework Programme for Research and Innovation Horizon 2020 under Grant Agreement No 956200


The ocean is a fundamental part of the global live-support system and provider of a wealth of resources to the humanity. Despite this paramount importance to society, there are fundamental gaps in ocean observing and forecasting systems, limiting our capacity to sustainably manage our activities in the ocean. Ocean observing is “big science” and cannot be solved by individual nations. EuroSea will support European integration for coordinated observations of the ocean that can be sustained in the long term.

EuroSea is a European Union Horizon 2020 Innovation Action running from November 2019 to December 2023. It brings together key European actors of ocean observation and forecasting with key end users of ocean observations, responding to the G7 Future of the Seas and Oceans Flagship Initiative. EuroSea’s innovative demonstration activities are focused on operational services, ocean health and climate, where a dialogue between actors in the ocean observing systems will guide the development of the services.

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 862626


The objective of BUGWRIGHT2 will be to bridge the gap between the current and desired capabilities of ship inspection and service robots by developing and demonstrating an adaptable autonomous robotic solution for servicing ship outer hulls. By combining the survey capabilities of autonomous Micro Air Vehicles (MAV) and small Autonomous Underwater Vehicles (AUV), with teams of magnetic-wheeled crawlers operating directly on the surface of the structure, the project inspection and cleaning system will be able to seamlessly merge the acquisition of a global overview of the structure with performing a detailed multi-robot visual and acoustic inspection of the structure, detecting corrosion patches or cleaning the surface as necessary – all of this with minimal user intervention. The detailed information provided will be integrated into a real-time visualization and decision support user-interface taking advantage of virtual reality technologies. Although ships are the targeted application, BUGWRIGHT2 technology may be easily adapted to different structures assembled out of metal plates, and in particular to storage tanks, our secondary application domain.

The project consists of a large consortium bringing together not only the technological knowledge from academia but the complete value chain of the inspection robotic market: two SMEs, one class society to evaluate the use of these technologies in the certification processes, a marine service  provider and two harbors to provide access to ships, one shipyard to deploy the system within a maintenance framework and two shipowners. In addition, specialists in maritime laws and workplace psychologists will ensure that the digitalization of this market sector is designed around user acceptance. Finally, a specialist in innovation will lead the dissemination and exploitation activities.

Funded under: H2020-EU.2.1.1.
Grant agreement ID: 871260